Mars Exploration Rover Opportunity

Opportunity, also known as MER-B (Mars Exploration Rover – B) or MER-1, is a robotic rover active on the planet Mars since 2004.

Operator: NASA, Jet Propulsion Laboratory

MER Opportunity was launched on July 7, 2003, and landed on Mars’ Meridiani Planum on January 25, 2004, at 05:05 Ground UTC (about 13:15 Mars local time), three weeks after its twin Spirit (MER-A), also part of NASA‘s Mars Exploration Rover Mission, touched down on the other side of the planet.

With a planned 90sol (Martian days) duration of the activity, Opportunity remains active as of 2014, having already exceeded its operating plan by 10 years,150 days (in Earth time). Opportunity has continued to move, gather scientific observations, and report back to Earth for over 40 times its designed lifespan.

On July 28, 2014, NASA announced that Opportunity, after having traveled over 40 km (25 mi) on the planet Mars, has set a new “off-world” record as the rover having driven the greatest distance, surpassing the previous record held by the Soviet Union’s Lunokhod 2 rover that had traveled 39 km (24 mi) on the Moon.

Fixed science/engineering instruments include:

  • Panoramic Camera (Pancam) – examines the texture, color, mineralogy, and structure of the local terrain.
  • Navigation Camera (Navcam) – monochrome with a higher field of view but lower resolution, for navigation and driving.
  • Miniature Thermal Emission Spectrometer (Mini-TES) – identifies promising rocks and soils for closer examination, and determines the processes that formed them.
  • Hazcams, are two B&W cameras with 120-degree field of view, that provide additional data about the rover’s surroundings.

The rover arm holds the following instruments:

  • Mössbauer spectrometer (MB) MIMOS II – used for close-up investigations of the mineralogy of iron-bearing rocks and soils.
  • Alpha particle X-ray spectrometer (APXS) – close-up analysis of the abundances of elements that make up rocks and soils.
  • Magnets – for collecting magnetic dust particles
  • Microscopic Imager (MI) – obtains close-up, high-resolution images of rocks and soils.
  • Rock Abrasion Tool (RAT) – exposes fresh material for examination by instruments on board.

The cameras produce 1024-pixel by 1024-pixel images, the data is compressed with ICER, stored, and transmitted later.

 Useful external links:

sources: NASA, JPL, Wikipedia, YouTube